- \equiv Assignment problem
- Group Replacement Policy

 \equiv

Question Paper Code: 6494

B.C.A. (Semester-IV) Examination, 2018

[New Syllabus]

OPTIMIZATION TECHNIQUES

[Fourth Paper]

[BCA-S-209]

Time: Three Hours]

[Maximum Marks: 100

Note: Answer five questions in all. Question No.1 is attempted from each Unit. compulsory. Besides this, one question is to be

Write short notes on the following:

 $[4 \times 10 = 40]$

- Define feasible solution of a transportation problem.
- (b) in support. "Optimization techniques is a Science". Explain
- (c) Define mathematical model in detail.
- <u>a</u> Define loops in transportation problem.
- (e) Define Idle time in sequencing problem
- Define Order Cycle in detail.
- Define objective function and constraints in LPP.

6494/800

[P.T.O.]

6494/800

- Ξ Define infeasible solution in detail.
- \equiv Define anticipation inventories in detail
- Discuss the situations in which replacement becomes essential

LINU

- 2 valuable in aiding executive decisions. Explain how and why optimization techniques are [15]
- ω Maximize Use simplex method to solve the following LPP: [15]

mize
$$Z = 5x_1 + 3x_2$$

Subject to constraints $x_1 + x_2 \le 2$, $5x_1 + 2x_2 \le 10$

$$3x_1 + 8x_2 \le 12$$
, $x_1, x_2 \ge 0$

II-TINU

- formulation by taking the example of your own choice. Define linear programming problem and its mathematical
- O problem: programming? Write the dual of the following primal What do you understand by 'duality' in linear [15]

Maximize
$$Z = 5x_1 + 2x_2$$

Subject to
$$x_1 - x_2 \ge 2$$

$$2x_1 + 3x_2 \le 5$$

 $x_1, x_2 \ge 0$

$$x_1, x_2 \ge 0$$

6494/800

- (a) assumptions. Define sequencing problems with its major 8
- **b** Describe Economic order quantity (EOQ) graph in detail.
- purchased in fixed number of equal intervals. no shortage. Derive the optimum value of Quantity (Q) Describe Economic order quantity (EOQ) problem with [15]

VI-TIND

obtain an initial feasible solution using this method to the Describe Vogel's approximation method in detail and following product distribution problem:

	Des	tine	tion	Destination (City)	ίλ.
Factory	ç	02	C2 C3		C4 Availability
01	20	22	22 17	D.0	120
Ö,	24	37 09	90	97	70
05	32	37	20	37 20 15	50
Domand	80	#0	30	60 40 30 110	240

Costs are expressed in terms of rupees per unit

9 Write short notes on the following:

 $[5 \times 3 = 15]$

Limitations of queing theory

 \equiv

6494/800

[P.T.O.]